pygan.discriminativemodel.autoencodermodel.convolutionalautoencoder.convolutionalladdernetworks package¶
Submodules¶
pygan.discriminativemodel.autoencodermodel.convolutionalautoencoder.convolutionalladdernetworks.seq_cln_model module¶
-
class
pygan.discriminativemodel.autoencodermodel.convolutionalautoencoder.convolutionalladdernetworks.seq_cln_model.
SeqCLNModel
(convolutional_auto_encoder=None, batch_size=10, channel=1, learning_rate=1e-10, learning_attenuate_rate=0.1, attenuate_epoch=50, opt_params=None, feature_matching_layer=0)[source]¶ -
Ladder Networks with a Stacked convolutional Auto-Encoder as a Discriminator..
This model observes sequencal data as image-like data.
If the length of sequence is T and the dimension is D, image-like matrix will be configured as a T × D matrix.
References
- Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise training of deep networks. In Advances in neural information processing systems (pp. 153-160).
- Dumoulin, V., & V,kisin, F. (2016). A guide to convolution arithmetic for deep learning. arXiv preprint arXiv:1603.07285.
- Erhan, D., Bengio, Y., Courville, A., Manzagol, P. A., Vincent, P., & Bengio, S. (2010). Why does unsupervised pre-training help deep learning?. Journal of Machine Learning Research, 11(Feb), 625-660.
- Erhan, D., Courville, A., & Bengio, Y. (2010). Understanding representations learned in deep architectures. Department dInformatique et Recherche Operationnelle, University of Montreal, QC, Canada, Tech. Rep, 1355, 1.
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning (adaptive computation and machine learning series). Adaptive Computation and Machine Learning series, 800.
- Manisha, P., & Gujar, S. (2018). Generative Adversarial Networks (GANs): What it can generate and What it cannot?. arXiv preprint arXiv:1804.00140.
- Masci, J., Meier, U., Cireşan, D., & Schmidhuber, J. (2011, June). Stacked convolutional auto-encoders for hierarchical feature extraction. In International Conference on Artificial Neural Networks (pp. 52-59). Springer, Berlin, Heidelberg.
- Rasmus, A., Berglund, M., Honkala, M., Valpola, H., & Raiko, T. (2015). Semi-supervised learning with ladder networks. In Advances in neural information processing systems (pp. 3546-3554).
- Valpola, H. (2015). From neural PCA to deep unsupervised learning. In Advances in Independent Component Analysis and Learning Machines (pp. 143-171). Academic Press.
- Zhao, J., Mathieu, M., & LeCun, Y. (2016). Energy-based generative adversarial network. arXiv preprint arXiv:1609.03126.
-
feature_matching_forward
(observed_arr)[source]¶ Forward propagation in only first or intermediate layer for so-called Feature matching.
Parameters: observed_arr – np.ndarray of observed data points. Returns: np.ndarray of outputs.